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Spectral statistics of the two-body random ensemble revisited
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Using longer spectra we reanalyze spectral properties of the two-body random ensemble studied 30 years
ago. At the center of the spectra the old results are largely confirmed, and we show that the nonergodicity is
essentially due to the variance of the lowest moments of the spectra. The longer spectra allow us to test and
reach the limits of validity of French’s correction for the number variance. At the edge of the spectra we
discuss the problems of unfolding in more detail. With a Gaussian unfolding of each spectrum the nearest-
neighbor spacing distribution between ground state and first exited state is shown to be stable. Using such an
unfolding the distribution tends toward a semi-Poisson distribution for longer spectra. For comparison with the
nuclear table ensemble we could use such unfolding obtaining similar results as in the early papers, but an
ensemble with realistic splitting gives reasonable results if we just normalize the spacings in accordance with
the procedure used for the data.
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I. INTRODUCTION

The Gaussian orthogonal ensemble~GOE! was originally
introduced by Wigner@1# in 1951 into physics in order to
describe statistics of isolated, high-lying nuclear levels.
detailed analysis of each state seemed neither possible
desirable. Statistical properties, on the other hand, w
needed for nuclear technology and were well described
the GOE. About a quarter of a century ago there was con
erable interest in the so-called embedded ensembles an
particular in the two-body random Hamiltonian ensem
~TBRE! @2–5#, because it was realized that the GOE rep
sented ann-body interaction in a mean-field basis, while it
generally assumed that nuclei can be fairly well described
an effective two-body interaction in this basis. Thusn-body
Hamiltonians were constructed from two-body GOE’s a
suming degenerate single-particle states. The spectral s
tics of these two-body random ensembles were analy
The main findings were

~1! The level density of the TBRE is Gaussian@2–4#,
rather than semicircular.

~2! The TBRE is neither stationary@5# nor ergodic@6,7#.
~3! Unfolding the TBRE individually GOE statistics i

recovered@6,7#.
~4! The deviation with respect to GOE is due to the va

ance of average spacings over the ensemble@6#.
~5! Fluctuations at the edge of the spectrum of a TB

are very large@5# compared to those of a GOE and can
roughly described by a Brody distribution@8# of nearest-
1063-651X/2000/63~2!/026204~7!/$15.00 63 0262
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neighbor spacings with a parameterv50.85 @9#.
These results, with the exception of the one for the le

density, are exclusively numerical. They were obtained a
time of very limited computer facilities. As a consequenc
only few particles were treated and the dimension of
TBRE matrices was small.

There has been recently a flurry of interest in the TBR
regarding properties of wave functions and spectra@10– 22#.
In this context the old work was ignored to a large exte
Yet it seems worthwhile to take it into account, because i
not clear what effects nonergodicity could have in the n
context. The numerical results can be improved considera
upon and by consequence the old results can be tested.
thermore it seems desirable to go beyond the TBRE to w
we may call a realistic two-body random ensemble~RTBRE!
by lifting the degeneracy condition on the single-partic
spectrum. Applications in nuclear physics and in other fie
certainly require this.

In what follows we will first fix notation defining the
TBRE properly and proceed in Sec. III to analyze propert
in the center of the spectrum. In Sec. IV we consider pr
erties at the edge of the spectrum and we discuss the RT
which seems to differ mainly there. Conclusions will b
given in the last section.

II. DEFINITION OF THE TBRE

The TBRE is defined for a fermionic system ofn spin-1/2
particles in three dimensions. A set of degenerate sin
©2000 The American Physical Society04-1
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particle states with well-defined angular momentum a
other quantum numbers is used to constructn-particle states,
that belong to a good total angular momentumJ, and if we
think of a nucleus, also a good isospinT. Due to the Pauli
principle and the corresponding blocking of states, the low
single-particle states may not enter the picture because
assume them to be filled and inert. The effective two-bo
interaction usually used in this context was replaced b
Gaussian distributed two-body interaction matrix who
strength is irrelevant as no energy scale is established
degenerate single-particle states.

For our numerical studies we choose a strength param
l such that the valuel51 corresponds to a typical interac
tion strength in the nuclear 2s21d shell on which we shall
concentrate. This parameter will be important for t
RTBRE, where realistic mean-field parameters yield the
evant single-particle energies and thus provide an ene
scale. The calculations reported here were mainly carried
for eight particles in the 2s21d shell. Information about the
quantum numbers, dimension of the spectra, and the num
of matrices of each ensemble used can be found in Tab
The corresponding shell-model calculations were carried
using the codeOXBASH @23#. As far as spectral statistics ar
concerned we shall mainly consider the nearest-neigh
spacing distributionP(s) and the number varianceS2(L)
and occasionally the skewnessg1(L) and the excessg2(L)
@24#; all refer to unfolded spectra, i.e., to spectra whose lo
average density is normalized to one. The unfolding
some fine points which will be essential to this paper a
will be discussed in the next section. We recall the defi
tions of the spectral fluctuation measures:P(s) gives the
probability to find two energy levels at distances. S2(L) is

TABLE I. Quantum numbers, dimension of the matrices, a
the number of members for the ensembles analyzed in this pa

(J,T) Dimension Number of matrices

TBRE (0,0) 325 500
TBRE (0,2) 287 500
TBRE (2,0) 1206 708
RTBRE (0,0) 325 500
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the variance of the number of levelsN(L) in an energy in-
terval of lengthL and

g1~L !5
S3~L !

„S2~L !…2/3
and g2~L !5

S4~L !

„S2~L !…2
23

are combinations of higher momentsS i5@N(L)2L# i . As
we assume stationary spectra the results do not depen
the initial point of the intervalL, and indeed usually average
will be taken over both ensembles and some energy wind
This will be specified in each case.

III. STATISTICS IN THE CENTER OF THE TBRE AND
NONERGODICITY

Before we proceed to analyze statistics of spectral fl
tuations we have to unfold the spectrum@24# in order to have
average spacingD51 throughout the spectrum. For this pu
pose we could use the analytic result that we have a Gaus
density for the TBRE@4#. For practical purposes it turns ou
to be convenient simply to make a polynomial unfoldin
using a best fit to the cumulative level density of the e
semble. For the central region of the spectrum the type
unfolding used is indeed not relevant.

We thus superpose all spectra and the integrated l
density~staircase! is fitted with a polynomial of degree 15
Each spectrum is unfolded with this polynomial for an e
ergy interval at the center of the spectra which contains
the average 115 states and calculatedP(s) andS2(L). The
results are shown in Figs. 1~a! and 1~b!. The short-range
fluctuations deviate significantly from the GOE and the lon
range correlations show huge deviations from this ensem
This becomes rather obvious if we look at the distribution
the average energy and width of each spectrum individua
In Table II we compare the following variances:sc of the
distribution of the average energies of each spectrum,sv of
the widths distribution of each spectrum ands tot , which is
the width of the energy distribution of the entire ensemb
The scattering of the centers and the widths of the TBRE
the RTBRE in units of the total widths is about 30 tim
larger than the one of the GOE. Both quantities fluctu

r.
ll
issa to the
ed line

entering the
.

FIG. 1. ~a! Ensemble averaged nearest-neighbor spacing distribution of the TBRE (J50, T50) at the center of the spectrum. The fu
line corresponds to the GOE; the ordinate is normalized to show the number of spacings in each bin of the histogram, and the absc
average spacing 1.~b! Number varianceS2(L) for the same case. The thin solid line corresponds to the ensemble average, the dash
to the ensemble average after normalizing the spectrum widths, and the dashed-dotted curve to the ensemble average after rec
spectra. The GOE values are indicated by the thick solid line. The normalization of the average level spacing defines the scales
4-2



a

SPECTRAL STATISTICS OF THE TWO-BODY RANDOM . . . PHYSICAL REVIEW E63 026204
TABLE II. Standard deviation of the center distributionsc , the distribution of the widths of the spectr
sv , and of the total level density of the ensembles tot for three different TBRE’s and the GOE.

sc sv s tot sc /s tot sv /s tot

TBRE J50, T50 20.1 4.5 39.7 0.51 0.11
TBRE J50, T52 22.1 4.3 37.1 0.59 0.12
TBRE J52, T50 20.3 4.2 38.2 0.53 0.11
RTBRE J50, T50 5.0 1.96 12.3 0.41 0.16
GOE 0.015 3.1731023 1.0 1.531022 3.131023
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widely while for the GOE the distributions are extreme
narrow.

This seems to indicate that the TBRE is not ergodic, a
thus unfolding with the ensemble averaged level densit
inappropriate. This is in contradiction with the findings
French@6#, where he shows that the spectral width fluctu
tions~identical to his density fluctuations! decrease with 1/k,
wherek2/2 is the number of independent matrix elements
a one-dimensional~symmetry free! TBRE. This result has
recently been confirmed@25# and holds similarly for the fluc-
tuations of the positions of the centers of the spectra. The
good reason to believe that it also holds in the shell-mo
though the compexity of the relations involving angular m
mentum, spin and isospin preclude an analytic proof. Nev
theless the statement that rapid convergence may be
pected as we increase the number of single-particle le
~responsible for the independent matrix elements! @6# is de-
ceiving. For any practical situation the total size of the H
bert space is relevant, both because of the numerical di
nalization aspect and because the number of tru
participating states is always limited, though possibly b
Yet if we assume a constant filling factor of the shell, i.
that the particle number increases as the number of sin
partice states, the fluctuations decrease essentially
1/ln(N), and for finite particle numberm like 1/N2/m. This
makes for very poor convergence. For the case with sym
try, the ratio of independent matrix elements to number
states is in general even less favorable, and thus for prac
purposes we cannot assume ergodicity except if we tru
can take the limit analytically.
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We, therefore, proceed to adjust a polynomial of degre
to each spectrum individually and use this individual dens
for the unfolding procedure.

Figure 2~a! and 2~b! show that nowP(s) andS2(L) are
in good agreement with the GOE prediction and Figs. 3~a!
and 3~b! show a similar agreement for the skewness a
excess. We should remark that in this case we could incre
the energy interval and decrease the degree of the pol
mial in order to get the high quality of the result forS2(L)
up to L550. We discarded 85 states both at the upper
lower end of the spectra. These numbers were chosen
cause omitting fewer states showed significant edge eff
while omitting more reduced the range ofL for which the
fluctuations ofS2(L) were acceptable.

We next wish to check whether the variations of the ce
ters and widths of the spectra were alone responsible for
deviations with respect to the GOE. Therefore, we repea
the calculations with an ensemble unfolding after first rec
tering all spectra to the same value or, alternatively, norm
izing their width to the same value. The result for the numb
variance for both procedures is drawn in Fig. 1~b!. Both
curves for the number variance represent an improvem
but remain very far from GOE. Obviously we should app
both corrections, i.e., both recenter and dilate the spe
such as to correspond to uniform centers and widths be
the ensemble unfolding. The result is such that on the s
of Fig. 1~b! it is not distinguishable from the GOE. Th
result is therefore plotted in Fig. 2~b! and is comparable to
the one obtained by unfolding the individual spectra.

On the average we discarded 105 states at the edges o
ne
spond,
s obtained
FIG. 2. ~a! Nearest-neighbor spacing distribution of the TBRE (J50, T50) after each spectrum is unfolded individually. The solid li
corresponds to the GOE.~b! Number varianceS2(L) for the same case. Scales as in Fig. 1. The dotted and dashed curves corre
respectively, to spectral average and ensemble average after recentering the spectra and normalizing their widths. The full line i
for the GOE.
4-3



cales

J. FLORES, M. HOROI, M. MU¨ LLER, AND T. H. SELIGMAN PHYSICAL REVIEW E63 026204
FIG. 3. ~a! Skewnessg1(L) and~b! excessg2(L) for the spectral average of the TBRE. The full line corresponds to the GOE. The s
are determined by the average level spacing 1.
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spectra and foundm515 as the optimum degree for th
polynomial in this analysis. The quality of the energy av
agedS2(L) is only marginally better. Higher moments pla
a minor role. We obtained the same result for an ensemb
comparable size and quantum numbersJ50, T52 and J
52, T50. Similar agreement was found forP(s), as well
as for skewness and excess.

These results seem to indicate that the first and sec
moments are basically responsible for the nonergodicity
the TBRE, but we have no theoretical argument to supp
this conjecture, and thus it might not always be true, or br
down with higher exactitude.

The above procedure eliminates the large fluctuation
the average density of each spectrum, but it is not tot
equivalent to the procedure proposed by French@6#. In the
original paper the correction he calculated was given for
distribution of widths ofnth neighbor spacings as a functio
of L. We translated the correction to one forS2(L) †see Eqs.
~5.3! and ~6.3! of Ref. @7#‡ that reads as

Ss
2~L !5

Se
2~L !1F1

6
2L2G s2

D2

12
s2

D2

, ~1!

FIG. 4. Application of formula~1! as described in the tex
~dashed line! in comparison with the GOE~full line!. Scales as in
Fig. 1.
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2(L) and Ss

2(L) denote the ensemble and spect
~energy! averaged number variance at distanceL ands2 de-
notes the ensemble variance of the spectrally averaged m
level distanceD. Figure 4 showsSs

2(L) as calculated from
Eq. ~1! using the numerical data forSe

2(L). Note that this
correction is applied after recentering the spectra. This is
explicit in the original paper, but it is the only reasonab
way to interpret the basic argument given there. Indeed,
plication of the formula to nonrecentered spectra gives
reasonable results.

For correlations up to aboutL55 and certainly for the
nearest-neighbor spacing distribution the correction wo
quite well; at larger distances discrepancies become large
is to be expected if the aim is to simulate the adjustmen
the width of a near Gaussian. The larger the spectra
larger the range on which we expect the correction to w
well. In earlier calculations with smaller ensembles the nu
ber variance was not considered at large distances, and
the deviation could not be detected.

The spectral properties of the RTBRE at the center
also found to be of the GOE type up to some energy ra
which depends on the subspace defined by the quantum n
bers we consider and on the interaction strength.

IV. PROPERTIES AT THE EDGE OF THE SPECTRA

The fluctuations at the edge of the spectra are of inte
because of the comparison with low-lying nuclear states@9#,
and in the context of recent work on the angular moment
dependence of ground states@18,20,21#. The quantity to con-
sider is the nearest-neighbor spacing distribution. T
old results are fitted with Brody distributionsP(s,v)
5a(v11)sv exp$2asv11% with a(s,v)5@G„(v12)/(v
11)…#v11 @8# and parameters aroundv50.5. Recent studies
have suggested the use of semi-Poisson distributionsP(s)
54s exp$22s% @26#, that might be relevant as we are inte
ested in the edge of the spectra. These distributions h
been discussed in relation with triangles with irrational re
tions between angles@27#, where the coincidence is spotty
We keep this additional option in mind to expand on the o
discussions.

The simplest way to proceed is to take all spacings
tween the first and the second level and normalize them
4-4
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FIG. 5. ~a! Distribution of the spacings between ground and first excited states for the TBRE (J50, T50). The dashed-dotted line
corresponds to the semi-Poisson and the dashed line to the best Brody fit.~b! The same as in~a! for the quantum numbers (J52, T
50). Scales as in Fig. 1.
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average 1~for improved statistics we use the correspond
spacings at the upper end of the spectrum also, without m
tioning it explicitly each time!. In Fig. 5 we show the spacin
distribution obtained in this way, and we find amazing
large spacings up to 8 in the caseJ50, T50 and up to 6 for
the ensemble with quantum numbersJ52, T50. Note that
the same procedure performed on a GOE of the same
leads to a spacing distribution very similar to that at t
center of the spectrum. The semi-Poisson distribution d
not yield a very convincing fit, but is not worse than th
usual Brody distribution, despite the fact that the latter h
one free parameter.

Normalizing the distances to 1 might seem too naive.
though the polynomial unfolding of the integrated spectr
delivered good results for the analysis of the central regio
is not useful at the edges. Therefore, we proceed to u
Gaussian to unfold each spectrum individually adjusting
parameters. This procedure has some merit; a Gaussian
exact result for the ensemble with infinite dimension, thou
the fact that we have already re-confirmed the nonergodi
of the TBRE casts some doubt on its application to in
vidual spectra. In Fig. 6 we show the spacing distribut
between the first and the second states forJ50, T50 and
J52, T50 unfolded in this way. The extremely large spa
ings have disappeared though the result still differs marke
from a GOE. The confidence levels, discussed in@8# for a
Brody fit, rely heavily on binning the small intensities in th
tail in one large bin and are therefore somewhat arbitrary
particular, a few large spacings would not invalidate the
The analysis of the ensemble forJ50, T52 delivered
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qualitatively the same result and they agree substanti
with the old results. The semi-Poisson distribution drawn
the same picture gives a surprisingly good fit in Fig. 6~b! and
is somewhat worse in Fig. 6~a!. Note though that the discrep
ancies again are considerably smaller for the longer spect
and are not larger for the shorter one than for the Bro
distribution with an adjusted parameter.

Yet we may ask if the Gaussian unfolding is really th
meaningful. In this context two questions arise: First, is
procedure stable? And second, does it relate to the only
perimental data we have? While the latter point will be d
cussed later, the former may be considered by using a Ga
ian multiplied by a polynomial for unfolding. We may the
ask if we find any plateau of the result as a function of t
degree of the polynomial. We considered the Brody para
eter as a function of the degree of the polynomial and
find that for the short spectrum a polynomial up to degre
and for the longer one a polynomial up to degree 4 can
added without a significant change of the Brody parame
This, combined with the theoretical expectation of a Gau
ian in the limit of large matrices, gives us some confidence
use the unfolding mentioned and should encourage fur
analysis as to the significance of the agreement found wi
semi-Poisson distribution.

We next look at the comparison with the nuclear phys
results of Ref.@9#. Note that here the normalization of th
spacings is made as a function of mass number and ang
momentum, but in no way is the spectral density further
in the spectrum involved. We therefore conclude that onl
comparison with the simply normalized spacings shown
FIG. 6. The same as in Fig. 5, but unfolding each spectrum individually with a Gaussian.
4-5
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Fig. 5 is legitimate. Yet these data have a very long tail t
seems incompatible with the nuclear data. As we discard
more sophisticated unfolding, we have to fall back on
alternative option. Obviously the assumption of degene
single-particle levels is not fulfilled in the nuclear case.
therefore, seems justified to consider realistic splitting of
single-particle levels combined with a realistic interacti
strength, i.e., the RTBRE. In this case we must limit o
selves to the spacings at the bottom of the spectrum, as s
metry is destroyed by the single-particle energies. Note
the results we now obtain are dependent on the shell split
and by no means universal. Yet if we compare these res
in Fig. 7 with the experimental ones we see less discrep
cies. As the nuclear data have poor statistics~135 events! the
agreement is not very meaningful, but at least the few la
spacings are consistent and the general shape seems co
Fits with a Brody distribution fails in this case and the agre
ment with a semi-Poisson distribution is similarly poo
Comparison with the unfolded TBRE for the smaller samp
on the other hand, would give a better fit, but has no r
foundation.

FIG. 7. Distribution of the spacing between ground and fi
excited states. Here the vertical scale gives the probability to
two levels at the distances. The thick solid line histogram corre
sponds to the nuclear table ensemble and the thin solid line on
the RTBRE (J50, T50). The dashed-dotted line corresponds
the semi-Poisson and the dashed curve to the best Brody fit.
nd

s.

v.
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V. CONCLUSIONS

We may conclude that the phenomenology observed
earlier papers for the TBRE is essentially correct wh
viewed with larger spectra. The correction formula propos
in @6# will only correct short-range behavior if we recent
the spectra previously. We found that recentering spectra
normalizing their widths would remove the nonergodicity
the center of the spectrum to a large extent. Note though,
this nonergodicity is not really a problem at least if we co
sider the center of the spectra, because in practice we ha
unfold each nuclear, atomic, resonance cavity or whate
spectrum individually, anyway. At the center of the spectru
the fluctuation properties of the RTBRE coincide with tho
of the TBRE on the range determined by the strength of
interaction.

As far as edge effects are concerned, the situa
changes. Spectral properties with realistic splitting of sing
particle levels differ significantly from those of the TBRE
The RTBRE seems to be in better agreement with
nuclear data, but no doubt a new compilation of such dat
desirable because the small sample does not allow a det
comparison. The unfolding procedures at the edge of
spectrum are quite sensitive, but we have found unfold
with a Gaussian to be quite satisfactory both because o
theoretical background and because of its stability. We c
tainly confirm earlier findings of large fluctuations, and wi
the Gaussian unfolding we found very reasonable agreem
with a semi-Poisson distribution for the longest spectrum
have.

We may conclude that future attention should be conc
trated on two points: First we should look out for possib
effects of the nonergodicity on wave-function properties, a
second we should investigate the possible significance of
semi-Poisson distribution at the edge of spectra.
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