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Spectral statistics of the two-body random ensemble revisited
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Using longer spectra we reanalyze spectral properties of the two-body random ensemble studied 30 years
ago. At the center of the spectra the old results are largely confirmed, and we show that the nonergodicity is
essentially due to the variance of the lowest moments of the spectra. The longer spectra allow us to test and
reach the limits of validity of French’s correction for the number variance. At the edge of the spectra we
discuss the problems of unfolding in more detail. With a Gaussian unfolding of each spectrum the nearest-
neighbor spacing distribution between ground state and first exited state is shown to be stable. Using such an
unfolding the distribution tends toward a semi-Poisson distribution for longer spectra. For comparison with the
nuclear table ensemble we could use such unfolding obtaining similar results as in the early papers, but an
ensemble with realistic splitting gives reasonable results if we just normalize the spacings in accordance with
the procedure used for the data.
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I. INTRODUCTION neighbor spacings with a parameter=0.85[9].
These results, with the exception of the one for the level
The Gaussian orthogonal ensem@®BOE) was originally ~ density, are exclusively numerical. They were obtained at a
introduced by Wignef1] in 1951 into physics in order to time of very limited computer facilities. As a consequence,
describe statistics of isolated, high-lying nuclear levels. Aonly few particles were treated and the dimension of the
detailed analysis of each state seemed neither possible nbBRE matrices was small.
desirable. Statistical properties, on the other hand, were There has been recently a flurry of interest in the TBRE
needed for nuclear technology and were well described b{garding properties of wave functions and spefdfa- 22.
the GOE. About a quarter of a century ago there was consid”! this context the old work was ignored to a large extent.

erable interest in the so-called embedded ensembles and ffft it seems worthwhile to take it into account, because it is
particular in the two-body random Hamiltonian ensemblenot clear what effects nonergodicity could have in the new

(TBRE) [2-5], because it was realized that the GOE repre_context. The numerical results can be improved considerably
sented am-body interaction in a mean-field basis, while it is UPON and by consequence the old results can be tested. Fur-
generally assumed that nuclei can be fairly well described b§ermore it seems desirable to go beyond the TBRE to what
an effective two-body interaction in this basis. Thubody W& may call a realistic two-body random ensemiftd BRE)
Hamiltonians were constructed from two-body GOE's as-PY liting the degeneracy condition on the single-particle

suming degenerate single-particle states. The spectral stag&P€Cctrum. Applications in nuclear physics and in other fields

tics of these two-body random ensembles were analyze§ertainly require this. _ »
The main findings were In what follows we will first fix notation defining the

(1) The level density of the TBRE is Gaussif2—4], TBRE properly and proceed in Sec. lll to analyze properties
rather than semicircular. in the center of the spectrum. In Sec. IV we consider prop-

(2) The TBRE is neither stationaf{] nor ergodic[6,7]. erties at the edge of the spectrum and we discuss the RTBRE

(3) Unfolding the TBRE individually GOE statistics is vv.hlch.seems to dlffgr mainly there. Conclusions will be
recovered6,7]. given in the last section.

(4) The deviation with respect to GOE is due to the vari-
ance of average spacings over the enserftile Il. DEFINITION OF THE TBRE

(5) Fluctuations at the edge of the spectrum of a TBRE
are very largg5] compared to those of a GOE and can be The TBRE is defined for a fermionic systemrmospin-1/2
roughly described by a Brody distributid8] of nearest- particles in three dimensions. A set of degenerate single-
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TABLE I. Quantum numbers, dimension of the matrices, andthe variance of the number of levely{L) in an energy in-
the number of members for the ensembles analyzed in this paperterval of lengthL and

J,7) Dimension Number of matrices

(L) L) and y,(L) —24“')

TBRE 0,0 325 500 yi(L)=——" yo(L)= _

TBRE Eo 2; 287 500 ' EHL)* ? (S2(L))2

TBRE (2,0) 1206 708 o _ _ _
RTBRE (0,0) 325 500 are combinations of higher momers=[N(L)—L]". As

we assume stationary spectra the results do not depend on
the initial point of the interval, and indeed usually averages
particle states with well-defined angular momentum andwill be taken over both ensembles and some energy window.
other quantum numbers is used to construparticle states, This will be specified in each case.
that belong to a good total angular momentdnand if we
think of a nucleus, also a good isospin Due to the Pauli
principle and the corresponding blocking of states, the lowest
single-particle states may not enter the picture because we
assume them to be filled and inert. The effective two-body Before we proceed to analyze statistics of spectral fluc-
interaction usually used in this context was replaced by auations we have to unfold the spectr{id#] in order to have
Gaussian distributed two-body interaction matrix whoseaverage spacing =1 throughout the spectrum. For this pur-
strength is irrelevant as no energy scale is established bhyose we could use the analytic result that we have a Gaussian
degenerate single-particle states. density for the TBRHE4]. For practical purposes it turns out
For our numerical studies we choose a strength parametés be convenient simply to make a polynomial unfolding,
\ such that the value =1 corresponds to a typical interac- using a best fit to the cumulative level density of the en-
tion strength in the nuclears2- 1d shell on which we shall semble. For the central region of the spectrum the type of
concentrate. This parameter will be important for theunfolding used is indeed not relevant.
RTBRE, where realistic mean-field parameters yield the rel- We thus superpose all spectra and the integrated level
evant single-particle energies and thus provide an energgensity (staircasgis fitted with a polynomial of degree 15.
scale. The calculations reported here were mainly carried ouach spectrum is unfolded with this polynomial for an en-
for eight particles in the - 1d shell. Information about the ergy interval at the center of the spectra which contains on
quantum numbers, dimension of the spectra, and the numbére average 115 states and calcula®éd) and>2(L). The
of matrices of each ensemble used can be found in Table tesults are shown in Figs.(d and Xb). The short-range
The corresponding shell-model calculations were carried oufluctuations deviate significantly from the GOE and the long-
using the codexBAsH [23]. As far as spectral statistics are range correlations show huge deviations from this ensemble.
concerned we shall mainly consider the nearest-neighbdFhis becomes rather obvious if we look at the distribution of
spacing distributionP(s) and the number variancE?(L) the average energy and width of each spectrum individually.
and occasionally the skewnesgsg(L) and the excesy,(L) In Table Il we compare the following variances; of the
[24]; all refer to unfolded spectra, i.e., to spectra whose locadlistribution of the average energies of each spectiwof
average density is normalized to one. The unfolding hashe widths distribution of each spectrum amg,;, which is
some fine points which will be essential to this paper andhe width of the energy distribution of the entire ensemble.
will be discussed in the next section. We recall the defini-The scattering of the centers and the widths of the TBRE and
tions of the spectral fluctuation measurdé¥s) gives the the RTBRE in units of the total widths is about 30 times
probability to find two energy levels at distanse>?(L) is larger than the one of the GOE. Both quantities fluctuate

Ill. STATISTICS IN THE CENTER OF THE TBRE AND
NONERGODICITY
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FIG. 1. (a) Ensemble averaged nearest-neighbor spacing distribution of the TBRHE, (T=0) at the center of the spectrum. The full
line corresponds to the GOE; the ordinate is normalized to show the number of spacings in each bin of the histogram, and the abscissa to the
average spacing 1b) Number varianc& ?(L) for the same case. The thin solid line corresponds to the ensemble average, the dashed line
to the ensemble average after normalizing the spectrum widths, and the dashed-dotted curve to the ensemble average after recentering the
spectra. The GOE values are indicated by the thick solid line. The normalization of the average level spacing defines the scales.
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TABLE Il. Standard deviation of the center distributiony, the distribution of the widths of the spectra
o, , and of the total level density of the ensembig; for three different TBRE's and the GOE.

O¢ gy Otot 0l oot Uu/Utot
TBRE J=0, T=0 20.1 45 39.7 0.51 0.11
TBRE J=0, T=2 22.1 4.3 37.1 0.59 0.12
TBRE J=2, T=0 20.3 4.2 38.2 0.53 0.11
RTBRE J=0, T=0 5.0 1.96 12.3 0.41 0.16
GOE 0.015 3.1x10°° 1.0 1.5¢10°2 3.1x1073

widely while for the GOE the distributions are extremely  We, therefore, proceed to adjust a polynomial of degree 7
narrow. to each spectrum individually and use this individual density
This seems to indicate that the TBRE is not ergodic, andor the unfolding procedure.
thus unfolding with the ensemble averaged level density is Figure 2a) and 2b) show that nowP(s) and>?(L) are
inappropriate. This is in contradiction with the findings of in good agreement with the GOE prediction and Figs) 3
French[6], where he shows that the spectral width fluctua-and 3b) show a similar agreement for the skewness and
tions (identical to his density fluctuatiopgecrease with 1, excess. We should remark that in this case we could increase
where«?/2 is the number of independent matrix elements inthe energy interval and decrease the degree of the polyno-
a one-dimensionalsymmetry fre¢ TBRE. This result has mial in order to get the high quality of the result fB#(L)
recently been confirmeg@5] and holds similarly for the fluc- up toL=50. We discarded 85 states both at the upper and
tuations of the positions of the centers of the spectra. There iswer end of the spectra. These numbers were chosen be-
good reason to believe that it also holds in the shell-modetause omitting fewer states showed significant edge effects
though the compexity of the relations involving angular mo-while omitting more reduced the range bffor which the
mentum, spin and isospin preclude an analytic proof. Neverfluctuations of2?(L) were acceptable.
theless the statement that rapid convergence may be ex- We next wish to check whether the variations of the cen-
pected as we increase the number of single-particle levelgrs and widths of the spectra were alone responsible for the
(responsible for the independent matrix elemef@$ is de-  deviations with respect to the GOE. Therefore, we repeated
ceiving. For any practical situation the total size of the Hil- the calculations with an ensemble unfolding after first recen-
bert space is relevant, both because of the numerical diageering all spectra to the same value or, alternatively, normal-
nalization aspect and because the number of truelyzing their width to the same value. The result for the number
participating states is always limited, though possibly big.variance for both procedures is drawn in Figh)l Both
Yet if we assume a constant filling factor of the shell, i.e.,curves for the number variance represent an improvement
that the particle number increases as the number of singldsut remain very far from GOE. Obviously we should apply
partice states, the fluctuations decrease essentially likkeoth corrections, i.e., both recenter and dilate the spectra
1/In(N), and for finite particle numbem like 1/N?™. This  such as to correspond to uniform centers and widths before
makes for very poor convergence. For the case with symmeahe ensemble unfolding. The result is such that on the scale
try, the ratio of independent matrix elements to number ofof Fig. 1(b) it is not distinguishable from the GOE. The
states is in general even less favorable, and thus for practicetsult is therefore plotted in Fig.(l)) and is comparable to
purposes we cannot assume ergodicity except if we truelthe one obtained by unfolding the individual spectra.

can take the limit analytically. On the average we discarded 105 states at the edges of the
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FIG. 2. (a) Nearest-neighbor spacing distribution of the TBRIE=Q, T=0) after each spectrum is unfolded individually. The solid line
corresponds to the GOEb) Number varianc&?(L) for the same case. Scales as in Fig. 1. The dotted and dashed curves correspond,
respectively, to spectral average and ensemble average after recentering the spectra and normalizing their widths. The full line is obtained
for the GOE.
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FIG. 3. (a) Skewnessy,(L) and(b) excessy,(L) for the spectral average of the TBRE. The full line corresponds to the GOE. The scales
are determined by the average level spacing 1.

spectra and foundn=15 as the optimum degree for the where32(L) and32(L) denote the ensemble and spectral
polynomial in this analysis. The quality of the energy aver-(energy averaged number variance at distahcand o2 de-
aged=?(L) is only marginally better. Higher moments play notes the ensemble variance of the spectrally averaged mean
a minor role. We obtained the same result for an ensemble Qgye| distanceDd. Figure 4 show§§(L) as calculated from
comparable size and quantum numbars0, T=2 andJ  gq (1) ysing the numerical data fa€2(L). Note that this

=2, T=0. Similar agreement was found 6X(s), as well correction is applied after recentering the spectra. This is not

as for skewness and excess. S - LS
These results seem to indicate that the first and secon%f(pIICIt in the original paper, but it is the only reasonable

moments are basically responsible for the nonergodicity Oy\llfiy :.O mte;r[;:et fthe b?S'f argument tglveg theret. Ind_eed, ap-
the TBRE, but we have no theoretical argument to suppo Ication of the formula 1o nonrecentered Spectra gives un-

this conjecture, and thus it might not always be true, or breaIQeasonable regults. )
down with higher exactitude. For correlations up to about=>5 and certainly for the

The above procedure eliminates the large fluctuations iff€arest-neighbor spacing distribution the correction works
the average density of each spectrum, but it is not totallyuite well; at larger distances discrepancies become large, as
equivalent to the procedure proposed by Fref&h In the is to be expected if the aim is to simulate the adjustment of
original paper the correction he calculated was given for théhe width of a near Gaussian. The larger the spectra the
distribution of widths ofnth neighbor spacings as a function larger the range on which we expect the correction to work
of L. We translated the correction to one Bf(L) [see Egs. Wwell. In earlier calculations with smaller ensembles the num-
(5.3) and(6.3) of Ref.[7]] that reads as ber variance was not considered at large distances, and thus

the deviation could not be detected.
1 o2 The spectral properties of the RTBRE at the center are
5 LZ}—Z also found to be of the GOE type up to some energy range
D 1) which depends on the subspace defined by the quantum num-

o2 bers we consider and on the interaction strength.
T

SAL)+

S2(L)=

IV. PROPERTIES AT THE EDGE OF THE SPECTRA

2 3
pX(D)
25}

The fluctuations at the edge of the spectra are of interest
because of the comparison with low-lying nuclear stg®as
and in the context of recent work on the angular momentum
dependence of ground sta{ds8,20,2]. The quantity to con-
sider is the nearest-neighbor spacing distribution. The
old results are fitted with Brody distribution®(s,w)
=a(w+1)s® exp{—as*™ with a(s,0)=[T(0+2)/(w
+1))]°*1[8] and parameters aroung=0.5. Recent studies
have suggested the use of semi-Poisson distributiR(s3
=4sexp{—2s} [26], that might be relevant as we are inter-
ested in the edge of the spectra. These distributions have
been discussed in relation with triangles with irrational rela-
tions between angld7], where the coincidence is spotty.
We keep this additional option in mind to expand on the old

FIG. 4. Application of formula(l) as described in the text discussions.
(dashed lingin comparison with the GOFull line). Scales as in The simplest way to proceed is to take all spacings be-
Fig. 1. tween the first and the second level and normalize them to
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FIG. 5. (a) Distribution of the spacings between ground and first excited states for the TBRHE, (T=0). The dashed-dotted line
corresponds to the semi-Poisson and the dashed line to the best Brody fihe same as irfa) for the quantum numbersl&2, T
=0). Scales as in Fig. 1.

average I(for improved statistics we use the correspondingqualitatively the same result and they agree substantially
spacings at the upper end of the spectrum also, without memwith the old results. The semi-Poisson distribution drawn in
tioning it explicitly each timé. In Fig. 5 we show the spacing the same picture gives a surprisingly good fit in Fitp)@nd
distribution obtained in this way, and we find amazingly is somewhat worse in Fig(8). Note though that the discrep-
large spacings up to 8 in the cake0, T=0 and up to 6 for ancies again are considerably smaller for the longer spectrum
the ensemble with quantum numbérs 2, T=0. Note that and are not larger for the shorter one than for the Brody
the same procedure performed on a GOE of the same sizdistribution with an adjusted parameter.
leads to a spacing distribution very similar to that at the Yet we may ask if the Gaussian unfolding is really that
center of the spectrum. The semi-Poisson distribution doemeaningful. In this context two questions arise: First, is the
not yield a very convincing fit, but is not worse than the procedure stable? And second, does it relate to the only ex-
usual Brody distribution, despite the fact that the latter haperimental data we have? While the latter point will be dis-
one free parameter. cussed later, the former may be considered by using a Gauss-
Normalizing the distances to 1 might seem too naive. Al-ian multiplied by a polynomial for unfolding. We may then
though the polynomial unfolding of the integrated spectrumask if we find any plateau of the result as a function of the
delivered good results for the analysis of the central region itlegree of the polynomial. We considered the Brody param-
is not useful at the edges. Therefore, we proceed to use eter as a function of the degree of the polynomial and we
Gaussian to unfold each spectrum individually adjusting itsfind that for the short spectrum a polynomial up to degree 2
parameters. This procedure has some merit; a Gaussian is thed for the longer one a polynomial up to degree 4 can be
exact result for the ensemble with infinite dimension, thoughadded without a significant change of the Brody parameter.
the fact that we have already re-confirmed the nonergodicitfrhis, combined with the theoretical expectation of a Gauss-
of the TBRE casts some doubt on its application to indi-ian in the limit of large matrices, gives us some confidence to
vidual spectra. In Fig. 6 we show the spacing distributionuse the unfolding mentioned and should encourage further
between the first and the second statesJfei0, T=0 and analysis as to the significance of the agreement found with a
J=2, T=0 unfolded in this way. The extremely large spac-semi-Poisson distribution.
ings have disappeared though the result still differs markedly We next look at the comparison with the nuclear physics
from a GOE. The confidence levels, discussed8hfor a  results of Ref[9]. Note that here the normalization of the
Brody fit, rely heavily on binning the small intensities in the spacings is made as a function of mass number and angular
tail in one large bin and are therefore somewhat arbitrary. I'momentum, but in no way is the spectral density further up
particular, a few large spacings would not invalidate the fit.in the spectrum involved. We therefore conclude that only a
The analysis of the ensemble far=0, T=2 delivered comparison with the simply normalized spacings shown in
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FIG. 6. The same as in Fig. 5, but unfolding each spectrum individually with a Gaussian.
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P(s) 1 _:. T T T V. CONCLUSIONS

We may conclude that the phenomenology observed in
earlier papers for the TBRE is essentially correct when
viewed with larger spectra. The correction formula proposed
in [6] will only correct short-range behavior if we recenter
the spectra previously. We found that recentering spectra and
normalizing their widths would remove the nonergodicity at
the center of the spectrum to a large extent. Note though, that
] this nonergodicity is not really a problem at least if we con-

1 sider the center of the spectra, because in practice we have to
unfold each nuclear, atomic, resonance cavity or whatever
spectrum individually, anyway. At the center of the spectrum
the fluctuation properties of the RTBRE coincide with those

FIG. 7. Distribution of the spacing between ground and firstof the TBRE on the range determined by the strength of the
excited states. Here the vertical scale gives the probability to findnteraction.
two levels at the distance The thick solid line histogram corre- As far as edge effects are concerned, the situation
sponds to the nuclear table ensemble and the thin solid line one ©hanges. Spectral properties with realistic splitting of single-
the RTBRE (=0, T=0). The dashed-dotted line corresponds to particle levels differ significantly from those of the TBRE.
the semi-Poisson and the dashed curve to the best Brody fit. The RTBRE seems to be in better agreement with the

nuclear data, but no doubt a new compilation of such data is
Fig. 5 is legitimate. Yet these data have a very long tail thatlesirable because the small sample does not allow a detailed
seems incompatible with the nuclear data. As we discarded eomparison. The unfolding procedures at the edge of the
more sophisticated unfolding, we have to fall back on anspectrum are quite sensitive, but we have found unfolding
alternative option. Obviously the assumption of degeneratevith a Gaussian to be quite satisfactory both because of its
single-particle levels is not fulfilled in the nuclear case. It,theoretical background and because of its stability. We cer-
therefore, seems justified to consider realistic splitting of theainly confirm earlier findings of large fluctuations, and with
single-particle levels combined with a realistic interactionthe Gaussian unfolding we found very reasonable agreement
strength, i.e., the RTBRE. In this case we must limit our-with a semi-Poisson distribution for the longest spectrum we
selves to the spacings at the bottom of the spectrum, as syrhave.
metry is destroyed by the single-particle energies. Note that We may conclude that future attention should be concen-
the results we now obtain are dependent on the shell splittingated on two points: First we should look out for possible
and by no means universal. Yet if we compare these resultsffects of the nonergodicity on wave-function properties, and
in Fig. 7 with the experimental ones we see less discreparsecond we should investigate the possible significance of the
cies. As the nuclear data have poor statisticd6 eventsthe  semi-Poisson distribution at the edge of spectra.
agreement is not very meaningful, but at least the few large
spacings are consistent and the general shape seems correct. ACKNOWLEDGMENTS
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